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Abstract: Despite continuous developments of manufacturing technology for micro-devices and
nano-devices, fabrication errors still exist during the manufacturing process. To reduce manufacturing
costs and save time, it is necessary to analyze the effects of fabrication errors on the performances of
micro-/nano-devices, such as the dielectric metasurface-based metalens. Here, we mainly analyzed
the influences of fabrication errors in dielectric metasurface-based metalens, including geometric
size and shape of the unit element, on the focusing efficiency and the full width at half maximum
(FWHM) values. Simulation results demonstrated that the performance of the metasurface was
robust to fabrication errors within a certain range, which provides a theoretical guide for the concrete
fabrication processes of dielectric metasurfaces.
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1. Introduction

The traditional optical lens realizes imaging through the gradual accumulation of
phase shift along the propagation path. However, it has some inherent shortcomings,
such as bulk volume, complex shape and limited performance. Metasurface is a kind of
planar array, composed of subwavelength resonant units arranged in periodic or aperiodic
ways, providing an opportunity to artificially manipulate light [1–3]. Compared with the
conventional optical lens, the optical lens based on metasurface has the advantages of
being ultrathin, highly integrative, and versatile in function [4,5]. Due to metasurfaces
possessing fascinating capabilities of light manipulation, they have been widely applied to
various fields [6–15].

The metasurface can control the phase, amplitude, and polarization of the incident
electromagnetic wave by changing the dimension parameters and orientations of the reso-
nant units [16,17], so as to realize singular electromagnetic characteristics. At present, in
miniaturized and integrated optical systems, metasurfaces have been designed to achieve
polarization transformation [18], optical focusing [19–21], holographic imaging and filter-
ing [22–24]. Typically, metasurface-based devices perform these functions, including flat,
sub-wavelength size, and higher focusing efficiency [25–29], which are beneficial for the
development of integrated devices.

At present, micro–nano fabrication technology [30] remains imperfect, though it is
rapidly developing. Due to the subwavelength feature of unit cells, geometric errors
are inevitably introduced in the fabrication process [31,32]. Ou et al. demonstrated a
broadband achromatic metalens in the wavelength range of 3.5–5 µm with an all-silicon
metasurface [33]. Their measured focusing efficiency was lower than the simulated, which
could be attributed to fabrication errors. Jia et al. reported a transmissive focusing metalens
in the terahertz range, based on an all dielectric metasurface that consisted of silicon nano-
antennas [34]. Due to fabrication errors, the measured full width at half maximum (FWHM)
at the focus was slightly larger than the theoretical result and focusing efficiency was lower
than the simulated result.
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In recent years, the influences of several common fabrication errors on the perfor-
mances of metasurfaces have been investigated in the visible and near infrared ranges,
where the metasurfaces are composited by unit structures with relatively low aspect ra-
tio [35–38]. However, the unit cells of mid-infrared metalens have much higher aspect ratio,
which might more easily introduce errors during fabrication. Obviously, the fabrication
errors have an uncertain impact on performance parameters of the designed metalens.
Therefore, it could be helpful to analyze the effect of fabrication errors on the performance
of dielectric metasurface so as to reduce manufacturing costs and save time.

The manufacturing process of the metasurface, shown in Figure 1a, was as follows.
Firstly, a GaAs film with a thickness of 3.6 µm was deposited on the GaF2 substrate
by chemical vapor deposition. Secondly, the GaAs film was fabricated using electron
beam lithography (EBL) technology. Finally, reactive ion etching with chlorine gas was
performed in an inductively coupled plasma system. However, GaAs nano-bricks with
high aspect ratio are easily damaged during the EBL process, inducing fabrication errors,
such as geometric size and shape deviations of the GaAs nano-bricks [36], which affects the
focusing efficiency and FWHM of the designed metalens.
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Figure 1. (a) Schematic of the metalens based on GaAs nano-bricks with different lengths and widths
at the wavelength of 4.2 µm, with the incidence from substrate to free space. (b) Unit-cell of the
proposed structure. The geometrical parameters were set as P = 1.8 µm, and h = 3.6 µm. Isosceles
trapezoidal platform (c) and smooth elliptical hemisphere (d) on the top of GaAs nano-bricks, seaming
completely with the rectangular brick.

In this paper, we numerically investigated the influences of different types of fabrica-
tion errors on the performances of focusing mesurfaces, such as the focusing efficiency and
FWHM. The metasurface consisted of gallium arsenide (GaAs) nano-bricks and manipu-
lated orthogonal linear polarizations simultaneously at a wavelength of 4.2 µm [39]. Three
kinds of typical fabrication errors, including those affecting the geometric parameter and
morphology of the metasurface, were systematically studied. The results could be helpful
for the rapid development of metasurfaces from their fundamentals to applications.

2. Structure Design

The investigated metasurface was composed of an array of GaAs nano-bricks standing
on a calcium fluoride (CaF2) substrate, as schematically shown in Figure 1a. The x- and
y-polarized incident plane wave with wavelength of 4.2 µm could be focused at two
different positions with the same focal length of 21 µm. The designed element is shown in
Figure 1b with the height of the GaAs nano-bricks being h = 3.6 µm. The period was set as
P = 1.8 µm. L and w denote the length and width of the GaAs nano-bricks, respectively,
the values varying from 0.35 µm to 1.4 µm to achieve the gradient transmission phases
covering 0–2π. Several typical fabrication errors of the metasurface could emerge during
the manufacturing process [40,41], such as the following: (i) The height of the nano-bricks
could be different from the designed value, especially for the metasurface with high aspect
ratio; (ii) The top of the GaAs nano-bricks was an isosceles trapezoidal platform, as shown
in Figure 1c, and h = h1 + h2. We kept h1 and h2 as constants and error was introduced by
changing the inclination angle θ of the isosceles trapezoidal platform; (iii) The top of GaAs
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nano-bricks was a smooth elliptical hemisphere, as shown in Figure 1d, and the error was
represented by the value of h3.

We performed numerical simulations and optimized our structure using a home-built
program based on the FEM (finite element method). In the simulations, a plane wave with
the wavelength of 4.2 µm propagating along the z-axis was incident from the substrate, and
its polarization was along the x-axis or y-axis. To save simulation time and memory, the
structure was assumed to be infinite in both x and y directions, and the periodic boundary
conditions were adopted at the four sides of the simulated element. Meanwhile, to remove
the simulated reflected waves from the top and bottom, PMLs (perfectly matched layers)
were applied on the top and bottom boundaries in the z direction. In addition, to ensure
simulation accuracy, the minimum mesh size was set to be 30 nm. The concrete optical
constants of GaAs and CaF2 were taken from Ref. [42].

Before studying the fabrication errors, a double phase modulation metalens [43,44]
was designed to focus x- and y-polarized incident plane waves at a wavelength of 4.2 µm.
To this end, the metalens could be constructed by the elements of GaAs nano-bricks, whose
phase distribution satisfied the following condition [42–44]:

Φ(x, y) =
2π

λ

(√
(x ± x0)

2 + (y ± y0)
2 + f 2 − f

)
(1)

where λ represents the incident wavelength, and f represents the predesigned focal length,
x and y are the coordinate of the nano-bricks, x0 and y0 represent the offset distances of focus
from the center of the metasurface along x- and y-axis, respectively. Herein, we assumed a
two-dimensional metalens with 34 units, in which the nano-bricks were distributed along
the x-axis. The corresponding phase profile of the focusing metalens could be written as

Φ(x) = 2π
λ

(√
(x ± x0)

2 + f 2 − f
)

, and the focal length and the concrete offset distance

were set as 21.0 µm and 14.4 µm, respectively. Once the phase profile was satisfied, the
incident plane wave converged into a spherical wave.

The designed metalens consisted of elements of 34 units of GaAs nano-bricks, in which
the structural parameters and corresponding phases of each nano-bricks are shown in
Table 1.

Table 1. The structural parameters and corresponding phases of each nano-brick.

Element No. Phase (deg.) L (µm) w (µm) Element No. Phase (deg.) L (µm) w (µm)

1 38 0.8 0.55 18 132 0.85 1.25

2 312 0.7 0.95 19 232 0.9 0.7

3 234 1.4 0.35 20 340 0.65 0.95

4 165 1.2 0.7 21 211 1 0.9

5 107 1.15 0.85 22 340 0.8 1.2

6 61 0.4 0.8 23 89 0.95 0.4

7 28 0.48 1.1 24 204 0.9 1.29

8 17 0.5 1.45 25 323 1 0.6

9 0 0.65 0.75 26 86 0.75 0.65

10 7 0.6 1 27 211 1.45 0.5

11 27 1.29 0.9 28 340 1.1 0.48

12 61 0.4 0.95 29 110 0.8 0.4

13 108 1.2 0.8 30 242 0.85 1.15
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Table 1. Cont.

Element No. Phase (deg.) L (µm) w (µm) Element No. Phase (deg.) L (µm) w (µm)

14 166 0.9 1 31 16 0.7 1.2

15 234 0.95 0.65 32 151 0.35 1.4

16 340 0.7 0.9 33 288 0.95 0.7

17 38 1.25 0.85 34 350 0.55 0.8

Here, we introduce the designing of the metasurface based on GaAs nano-bricks with
the help of double-phase modulation [45,46], and extending the modulation dimension of
linearly polarized light. Due to the rectangular structure of the co-polarized light and the
small polarization conversion of the non-rotating period nano-brick, the transmission phase
modulation of the co-polarized light could easily be realized. As shown in Figure 2a,b,
when the normal incident wavelength of x-polarized light was 4.2 µm, the phase and
transmittance of transmitted x-polarized light could be expressed as a function of the length
(L) and width (w) of the rectangular nano-brick in the range of 0.5~1.5 µm, respectively.
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Figure 2. Transmitted phase (a) and normalized transmittance (b) as a function of L and w for
normal incidence of the X-polarized light respectively, for the GaAs nano-bricks on CaF2 substrate.
(c,d) Transmitted phase and normalized transmittance as a function of L and w for normal incidence
of the Y-polarized light, respectively.

The phase modulation of transmitted light almost covered the whole 0~2π range,
and higher transmittance could also be selected. Similarly, Figure 2c,d, show the concrete
manipulating of phase and transmittance of transmitted y-polarized light, respectively. As
can be seen from Figure 2, for any modulation phase of transmitted x- and y-polarization
light, there existed a rectangular GaAs nano-brick, which could satisfy the needs of phase
modulations of two orthogonal polarizations simultaneously, and the higher transmittance.
Therefore, the method could obtain different phase responses of orthogonal polarization
states simultaneously by changing the length and width of rectangular nano-bricks, and
could independently manipulate the local phase of a pair of incident orthogonal polariza-
tion states.
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3. Results and Discussions
3.1. Deviation of Height

To demonstrate, we started by investigating the influences of the first type of fabri-
cation error, i.e., the deviation of height from the designed value, on focusing efficiency
and FWHM. The focusing efficiency is defined as the ratio of light intensity at the focus
to incident light intensity, and could be written as η = I f ocus/Iin, where the η is focusing
efficiency, Ifocus and Iin are light intensity at the focus and incident light intensity, respec-
tively. Figure 3a,b show the simulated distribution of the transmitted light intensity in
the x–z plane under normal incidence with x- and y-polarization, respectively. The white
solid lines plot the distributions of light intensity along the white dashed lines in each
case. The position on the white dashed lines corresponded to the focal length of the ideal
metalens, which could fully demonstrate the focusing performance of the metalens, includ-
ing focusing efficiency and FWHM. Therefore, the light intensity distribution profiles at
this location were facilitated to study the effect of fabrication errors on focusing perfor-
mance. The numbers on the right side of each figure were the values of light intensity at
the focus. From left to right, the heights of GaAs nano-bricks were h = 2.8 µm, 3.2 µm,
3.6 µm, 4.0 µm, and 4.4 µm, respectively. It was easy to see the focusing effect under both
x- and y-polarization even though the fabrication error introduced a large difference in
height (0.8 µm) between the real and ideal cases. Figure 3a shows that the focus intensity
reduced with increasing deviation of the metasurface height compared with the ideal case
under x-polarization. In contrast, the focus intensity under y-polarization did not show
similar dependence on the height of GaAs nano-bricks, as shown in Figure 3b. As shown
in Figure 3c, for the x-polarized incidence, the FWHM could be estimated as 0.71λ, 0.69λ,
0.83λ, 0.84λ, and 0.86λ when h = 2.8 µm, 3.2 µm, 3.6 µm, 4.0 µm, and 4.4 µm, respectively.
For the y-polarized incidence, the FWHM could be estimated as 0.82λ, 0.81λ, 0.85λ, 0.88λ,
and 0.92λ, when h = 2.8 µm, 3.2 µm, 3.6 µm, 4.0 µm, and 4.4 µm, respectively. The values
of FWHM were not significantly distorted by the deviation of height for the cases of both
x- and y-polarization, which showed the robustness of the focusing metasurface against
this kind of fabrication error. We also summarized the focusing efficiency of the cases
with different heights of GaAs nano-bricks under both x- and y-polarizations, as shown
in Figure 3d. It was observed that the focusing efficiency under x-polarized incidence
was smaller than that under y-polarized incidence, which was consistent with the results
in Figure 3a,b. The difference in focusing performances between x- and y-polarization
could be attributed to the asymmetric geometry of metalens along x- and y-axis in our
simulation model.

3.2. Trapezoidal Error

The second type of fabrication error is the trapezoidal error, as shown in Figure 1c,
which is also commonly introduced due to the unpredictable inclination. We set h1 = 1 µm
and h2 = 2.6 µm. The fabrication error was modeled by changing the inclination angle θ.
Figure 4a,b show the simulated distributions of the light intensity in x-z plane under normal
incidences of x- and y-polarization, respectively. The white solid lines plot the distribution
of light intensity along the white dashed lines in each case. The numbers on the right side
of each figure are the values of light intensity at the focus. From left to right, we set θ = 4◦,
8◦, 12◦, 16◦, and 20◦. Both Figure 4a,b show great focusing performance, even though
the fabrication error of inclination angle was brought into the metasurface. The focusing
electric field intensity did not weaken when the inclination angle increased under both x-
and y-polarization, compared with the ideal case.

As shown in Figure 4c, for the x-polarized incidence, the FWHM could be estimated as
0.78λ, 0.71λ, 0.72λ, 0.71λ, and 0.72λ when θ = 4◦, 8◦, 12◦, 16◦, and 20◦, respectively. For the
y-polarized incidence, the FWHM could be estimated as 0.76λ, 0.76λ, 0.77λ, 0.81λ, and 0.83λ
when θ = 4◦, 8◦, 12◦, 16◦, and 20◦, respectively. The value of FWHM was not sensitive to the
inclination angle for the cases of both x- and y-polarization. The results demonstrated that
the focusing metasurface was robust against the inclination angles. Figure 4d summarizes
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the calculated focusing efficiency of each case, which was consistent with the results in
Figure 4a,b. The difference in focusing performance between x- and y-polarization still
existed in these cases.
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Figure 4. Focusing performances of the transmission metalens at a wavelength of 4.2 µm when
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at the focus. (c) Simulated FWHM for each case. (d) Simulated focusing efficiency for each case.
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3.3. Elliptical Error

We introduced the third type of geometric fabrication error. To investigate, the elliptical
hemisphere height, as demonstrated in Figure 1d, was set as h3 = 0.2 µm, 0.4 µm, 0.6 µm,
and 0.8 µm. Figure 5a,b show the simulated distributions of the light intensity in x-z
plane under normal incidences of x- and y-polarization, respectively. The white solid lines
plot the distributions of light intensity along the white dashed lines in each case. The
numbers on the right side of each figure are the values of light intensity at the focus. From
left to right, the results correspond to the cases with h3 = 0.2 µm, 0.4 µm, 0.6 µm, and
0.8 µm, respectively. Both Figure 5a,b show focusing performances of the metalens with
the fabrication error of elliptical hemisphere. The focusing intensity became weaker in
Figure 5a,b when the elliptical hemisphere height increased.
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Figure 5. Focusing performances of the transmission metalens at a wavelength of 4.2 µm when the
fabrication error of elliptical hemisphere, with h3 = 0.2 µm, 0.4 µm, 0.6 µm, and 0.8 µm (from left to
right), emerged in the GaAs nano-bricks. Distributions of light intensity in the x-z plane under normal
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curves and the positions of focal planes, respectively. The number on the right side of each figure is
the value of light intensity at the focus. (c) Simulated FWHM for each case. (d) Simulated focusing
efficiency for each case.

As shown in Figure 5c, for the x-polarized incidence, the FWHM could be estimated
as 0.72λ, 0.73λ, 0.78λ, and 0.85λ when h3 = 0.2 µm, 0.4 µm, 0.6 µm, and 0.8 µm, respectively.
For the y-polarized incidence, the FWHM could be estimated as 0.81λ, 0.85λ, 0.83λ, and
0.94λ when h3 = 0.2 µm, 0.4 µm, 0.6 µm, and 0.8 µm, respectively. The values of FWHM
were not sensitive to the fabrication error of the elliptical hemisphere for the cases of both
x- and y-polarization incidences. The results demonstrated that the focusing metasurface
was also robust against the fabrication error of elliptical hemisphere. As summarized
in Figure 5d, we found that the calculated focusing efficiencies were inconsistent with
the simulated intensity distributions of the above focusing results. The existence of the
fabrication error of the elliptical hemisphere might change the amplitude and phase of
transmission, leading to deviation from the designed values. Through the simulation
calculation, we could conclude that the focusing performance of the designed metasurface
was quite robust against the fabrication error of elliptical hemisphere.

To better show the influences of the three fabrication errors, we plotted the simulated
focusing efficiency of the metalens consisting of GaAs nano-bricks with different height
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(h1), inclination angle (θ) and elliptic hemisphere height (h3), as shown in Figure 6. It is
easy to see that the focusing performance of the designed metasurface deviated from the
desired values, due to the existence of fabrication errors. The focusing efficiencies under
x-polarized incidence were different with those under y-polarized incidence. The difference
could be attributed to the asymmetric geometry of the metalens along the x-axis and y-axis
in our simulation model.
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4. Conclusions

In summary, a focusing metasurface was designed, working at a wavelength of 4.2 µm,
which consisted of GaAs nano-bricks standing on CaF2 substrate. The designed metasur-
face could focus the incident x- and y-polarized light at two symmetrical positions. We
introduced three kinds of typical manufacturing defects of metasurfaces and investigated
their influences on the focusing performances, such as the focusing efficiency and the
FWHM. The simulated results showed that the focusing intensity and focusing efficiency
changed due to the deviation of fabricated metasurface from the ideal case. Fortunately,
the value of FWHM was insensitive to the fabrication errors. The analysis results may help
in saving costs of experimental manufacturing and theoretical simulation.
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